

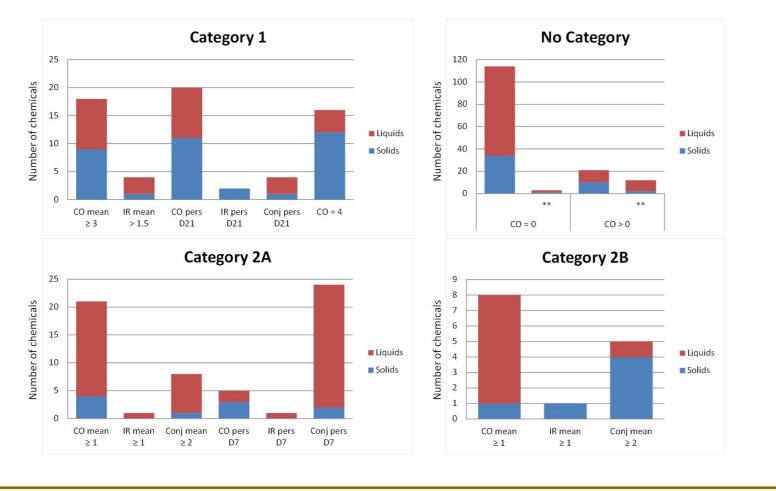
The Importance of Understanding Drivers of Irritation In Vivo for Selection of Chemicals Used in the **Development and Evaluation of** *In Vitro* **Eye Irritation Assays: Cosmetics Europe Analysis**

Barroso J¹, Alépée N², De Smedt A³, De Wever, B⁴, Hibatallah J⁵, McNamee P⁶, Mewes K.R⁴, Millet M⁷, Pfannenbecker U⁸, Tailhardat M⁹, Templier M⁷

¹Cosmetics Europe, Brussels, Belgium, ²L'Oréal R&I, Aulnay France, ³Janssen Research & Development, Beerse, Belgium, ⁴Henkel AG & Co. KGaA, Düsseldorf, Germany, ⁵Chanel Parfums Beauté, Neuilly Sur Seine, France, ⁶The Procter & Gamble Company, Egham, United Kingdom, ⁷Institut de Recherche Pierre Fabre, Castres, France, ⁸Beiersdorf AG, Hamburg, Germany, ⁹LVMH Recherche, St. Jean de Braye, France.

Cosmetics Europe's Task Force Eye Irritation (TFEI) is actively involved in the development of alternative methods to assess eye irritation potential of cosmetic ingredients using in vitro methods, based on optimizing current in vitro test methods, applied research projects and collaborative activities with external partners. Selecting chemicals for use in the development and evaluation of in vitro eye irritation assays based on a thorough understanding of what drives irritation in classification of ocular effects of chemicals in the in vivo rabbit Draize test is therefore a critical and essential element that enables identification and evaluation of predictive capacity and applicability domain at an early stage of development. To facilitate understanding of the importance of such drivers of irritation, Cosmetics Europe TFEI has undertaken an in depth

Strategy for Building a Master Chemicals List


- 1. Collection of chemicals with good quality in vivo data from existing databases (e.g. ECETOC, ZEBET and Laboratoire National de la Santé (Gautheron)) and generation of UN GHS classifications for eye irritation
- 2. Identification of the *in vivo* drivers of UN GHS classification, as depicted in Table 1
- 3. Differentiation of chemicals according to the drivers of classification as depicted in Table 2 and Figure 1, using the following prioritization scheme:
 - a) Category 1:
 - Chemicals classified based on severity (mean scores of Days 1-3)
 - Chemicals classified based on persistence at Day 21, but not severity
 - Chemicals classified based on CO = 4, but not severity or persistence
 - Choice of endpoint driving classification dependent on the number of animals
 - b) Category 2:
- Choice of endpoint driving classification (2B: severity; 2A: severity and persistence at Day 7) dependent on the number of animals
- c) No Category:
 - CO = 0 \rightarrow chemicals showing CO scores equal to zero in all animals and all observed timepoints
 - $CO > 0 \rightarrow$ chemicals showing at least one CO score higher than 0 at any timepoint in any animal

	6.	1 0000					Catagory 2				
Category 1 Severity Persistence at						Category 2 Severity	NC				
(Mean scores of Days 1-3)		Day 21				(Mean	scores of Da	CO = 0	CO > 0		
CO mean ≥ 3 in 67% of the animals	IR mean > 1.5 in 67% of the animals	со	IR	CR and/or	CO = 4 in at least 1 animal	CO mean ≥ 1 in 67% of the animals	IR mean ≥ 1 in 67% of the animals	CR mean and/or CC mean ≥ 2 in 67% of the animals	Chemicals with at least 1 animal with a mean score of days 1-3 for at least one endpoint above the		
				CC			Persistence a	classification cut-off marked with **			
						Day 7					
						CO	IR	and/or CC			

Introduction

analysis of the publicly available external databases containing in vivo eye irritation data for 258 chemicals and solutions of chemicals tested in the Draize eye irritation test. This analysis is based on having good quality in vivo data that has allowed a clear understanding of the different ocular tissues effects that drive classification. These include corneal opacity (CO), iritis (IR), conjunctival redness (CR), conjunctival chemosis (CC), days to clear and/or persistence of effects. In addition, all 258 chemicals were screened for their commercial availability, assurance that they cover the whole range of irritation potential and represent relevant classes and physical states. Until today such an analysis is unprecedented, and it will have important implications for *in vitro* methods development, evaluation and validation activities.

Figure 1: Distribution of chemicals according to drivers of classification for 258 chemicals (64 Cat1, 30 Cat 2A, 14 Cat 2B and 150 NC) from the ECETOC, ZEBET and Gautheron databases

Prom 3,6-Di 2,5-Dim Tetra amino Methy m-Di N-Lauroyl sa Sodium r N,N-Dimethy 4-Chloro-4-Tetra amino

Table 2: Drivers of classification for several representative chemicals selected from 3 publically available databases: ECETOC, ZEBET and Gautheron

Chemicals											
	GHS	Sever	Specific obse	Specific observations		ence			Physical	Data	
	Classification	Cut-off values	Number of animals	CO = 4 or other observations	Number of animals	Cut-off time	Number of animals	Comments	CAS #	Physical Form	Source
omethazine HCL	1	CO mean ≥ 3	2/3					Delayed effects	58-33-3	S	Gautheron
Quinacrine	1	IR mean > 1.5	2/3						69-05-6	S	ECETOC
-Dimethyloctanol	1	CO mean ≥ 1	3/3			CO pers D21	1/3	Delayed effects	151-19-9	L	ZEBET
Dimethylhexanediol	1	CO mean ≥ 1	3/3			IR pers D21	1/3		110-03-2	S	ZEBET
Butyl cellosolve	1	CO mean ≥ 1	3/3			Conj pers D21	3/3		111-76-2	L	ECETOC
thyl thioglycolate	1	CO mean ≥ 1	3/3	CO = 4	1/3			CO = 4 at D1 in 1/3 fully reversed by D10	2365-48-2	L	ECETOC
inopyrimidine sulphate	2A	CO mean ≥ 1	2/3			CO pers D7	1/3		5392-28-9	S	Gautheron
iso-Butanal	2B	CO mean ≥ 1	2/3						78-84-2	L	ZEBET
thyl cyanoacetate	2A	IR mean ≥ 1	3/3			IR pers D7	2/3		105-34-0	L	ECETOC
-Dinitrobenzene	2B	IR mean ≥ 1	2/3						99-65-0	S	ZEBET
sarcosine Na salt (10%)	2A	Conj mean ≥ 2; CO mean ≥ 1	3/3; 2/3			Conj pers D7	1/3		7631-98-3	S (L as tested)	Gautheron
n monochloroacetate	2B	Conj mean ≥ 2	3/3						3926-62-3	S	ZEBET
ethyl guanidine sulphate	NC	CO = 0 **	** Conj 1/3						598-65-2	S	ECETOC
o-4-nitrodiphenylether	NC	CO = 0							1836-74-4	L	ZEBET
inopyrimidine sulphate	NC	0 < CO < 1							5392-28-9	S	ECETOC
Methanol	NC	0 < CO < 1 **	** CO 1/3						67-56-1	L	Gautheron

Conclusion

Our analysis clearly demonstrates the importance of understanding the *in vivo* tissue effects which drive eye irritation classification according to the UN GHS system. This builds on recent more general publications in this area (Adriaens et al., Archives of Toxicology 2013). The availability of such a comprehensive list of the drivers of irritation for identified chemicals will be a critical and essential tool when selecting chemicals for development, evaluation and validation of new in vitro eye irritation tests. Valuable insights can be taken from our analysis of the Drol: 1) high involvement of corneal effects driving Cat 1, Cat 2A and Cat 2B classifications; 2) when persistence of effects at day 21 drives Cat 1 classification, this is primarily based on corneal effects; 3) the importance of conjunctival effects in classification of Cat 2A versus 2B; 4) low prevalence of iris effects driving classification. Also the physical form of the chemical can have an impact e.g. many more solids than liquids are classified Cat 1 when based on the criterion of CO=4.

Importantly, some inconsistencies within the *in vivo* data could be identified, e.g. : 1) tetra aminopyrimidine sulphate (CAS-No. 5392-28-9) which is classified differently (Cat 2A and NC) in two independent *in vivo* studies; 2) methyl thioglycolate (CAS No. 2365-48-2), which is identified as Cat 1 based on CO=4, even though corneal opacity fully reversed by day 10 of the study.

As such, provided here is a strategy for selecting reference chemicals based on understanding ocular effects that drive irritation in the *in vivo* rabbit Draize test in classification of chemicals. It is proposed that use of this approach would facilitate early and accurate assessment of the performance of a new method, within tiered testing strategies for example, that suggested in the EURL-ECVAM 2005 expert meeting (Scott et al., Toxicology In Vitro 2010). Presented in this poster is an excerpt of the overall analysis that has been completed for >500 chemicals which will be published in a peer-reviewed journal.

Abstract ID # 1027

Phoenix, 23-27 March, 2014